Lentiviral-mediated RNAi targeting p38MAPK ameliorates high glucose-induced apoptosis in osteoblast MC3T3-E1 cell line.
نویسندگان
چکیده
The p38 mitogen activated protein kinase (p38MAPK) pathway is an important signaling cascade involved in cell growth, differentiation and apoptosis. High glucose activates p38MAPK pathway in different cells, including osteoblasts. In the present study, role of p38MAPK in high glucose induced osteoblast apoptosis and potential of RNA interference (RNAi) targeting p38MAPK as a therapy strategy have been reported. Lentiviral-mediated RNAi effectively reduced p38MAPK and p-p38MAPK expressions in osteoblastic cell line (MC3T3-E1) following high glucose (22 mM) induction. Inhibition of p38MAPK activity significantly suppressed high glucose induced apoptosis of MC3T3-E1 cell and was confirmed by flow cytometry and ultra-structural examination by transmission electronic microscope. Inhibition of p38MAPK also significantly attenuates caspase-3 and bax protein expressions, but increased significantly bcl-2 expression as determined by Western blot analysis. The results suggested that p38MAPK mediates high glucose induced osteoblast apoptosis, partly through modulating the expressions of caspase-3, bax and bcl-2. Inhibition of p38MAPK with lentiviral-mediated RNAi or its specific inhibitor provides a new strategy to treat high glucose induced osteoblast apoptosis.
منابع مشابه
Targeted activation of AMPK by GSK621 ameliorates H2O2-induced damages in osteoblasts
GSK621 is a novel AMP-activated protein kinase (AMPK) activator. This study tested its potential cytoprotective effect in hydrogen peroxide (H2O2)-treated osteoblasts. In cultured MC3T3-E1 osteoblastic cells and primary murine osteoblasts, GSK621 significantly attenuated H2O2-induced cell death and apoptosis. AMPK activation was required for GSK621-induced osteoblast cytoprotection. Inhibition ...
متن کاملNeuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling
High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteobl...
متن کاملmiR-223 contributes to the AGE-promoted apoptosis via down-regulating insulin-like growth factor 1 receptor in osteoblasts
Advanced glycation end products (AGEs) have been confirmed to induce bone quality deterioration in diabetes mellitus (DM), and to associate with abnormal expression of miRNAs in DM patients or in vitro Recently, miRNAs have been recognized to mediate the onset or progression of DM. In the present study, we investigated the regulation on miR-223 level by AGE-BSA treatment in osteoblast-like MC3T...
متن کاملSodium nitroprusside-induced osteoblast apoptosis is mediated by long chain ceramide and is decreased by raloxifene.
Release of high levels of nitric oxide (NO) is associated with osteoblastic cell death. The mechanisms of NO-induced cytotoxicity are not well documented and it is presently not known if estrogenic compounds prevent this effect. We studied the role of ceramides in cell death induced by the NO donor sodium nitroprusside (SNP) and we tested the possibility that 17beta-estradiol, the anti-estrogen...
متن کاملThe Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation
The bone destruction disease including osteoporosis and rheumatoid arthritis are caused by the imbalance between osteoblastogenesis and osteoclastogenesis. Inhibition of the NF-κB pathway was responsible for decreased osteoclastogenesis. Recently many studies indicated that niclosamide, the FDA approved an antihelminth drug, inhibits prostate and breast cancer cells growth by targeting NF-κB si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Indian journal of experimental biology
دوره 49 2 شماره
صفحات -
تاریخ انتشار 2011